Comment on H Brysk's article on multiphoton absorption

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1975 J. Phys. A: Math. Gen. 81852
(http://iopscience.iop.org/0305-4470/8/11/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.88
The article was downloaded on 02/06/2010 at 05:03

Please note that terms and conditions apply.

COMMENT

Comment on H Brysk's article on multiphoton absorption

S Jorna
Physical Dynamics Incorporated, PO Box 556, La Jolla, California 92038, USA

Received 18 June 1975

Abstract

It is shown how Brysk's expansion for the function F can be obtained directly by analytic continuation of its series representation.

Brysk's expansion for the function F can be obtained straightforwardly by analytic continuation of its series representation (Brysk 1975, equation (7)) :

$$
\begin{equation*}
F=\frac{3}{4} \sum_{k=0}^{\infty} \frac{(2 k+2)!}{\left(k+\frac{3}{2}\right) k![(k+1)!]^{2}}\left(\frac{x}{4}\right)^{k} . \tag{1}
\end{equation*}
$$

The Mellin-Barnes integral representation of this ${ }_{2} F_{2}$ hypergeometric function is

$$
\begin{equation*}
F=\frac{3 \pi^{-1 / 2}}{2 \pi \mathrm{i}} \int_{-\mathrm{i} \infty}^{\mathrm{i} \infty} \frac{\Gamma(-\mu) \Gamma\left(\mu+\frac{3}{2}\right)}{\left(\mu+\frac{3}{2}\right) \Gamma(\mu+2)} x^{\mu} \mathrm{d} \mu \tag{2}
\end{equation*}
$$

which has simple poles at $\mu=-n-\frac{3}{2}, n=1,2, \ldots$, and a double pole at $\mu=-\frac{3}{2}$. The series expansion in inverse powers of x then follows immediately by summing the residues at these poles. We obtain
$F=3 \pi^{-1 / 2} \frac{\mathrm{~d}}{\mathrm{~d} \mu}\left(\frac{x^{\mu} \Gamma(-\mu)}{\Gamma(\mu+2) \Gamma\left(-\mu-\frac{1}{2}\right)}\right)_{\mu=-3 / 2}-3 \pi^{-1 / 2} \sum_{n=1}^{\infty} \frac{(-1)^{n} \Gamma\left(n+\frac{3}{2}\right)}{n!\Gamma\left(-n+\frac{1}{2}\right) n} x^{-n-3 / 2}$
or, carrying out the differentiation,

$$
\begin{equation*}
F=\frac{3}{2} \pi^{-1 / 2} x^{-3 / 2}\left(\ln x+4 \ln 2-2+\gamma-2 \pi^{-1} \sum_{n=1}^{\infty} \frac{\Gamma\left(n+\frac{3}{2}\right) \Gamma\left(n+\frac{1}{2}\right)}{n n!} x^{-n}\right), \tag{4}
\end{equation*}
$$

in agreement with Brysk's expression.

References

